
Ridge Distance Averaging Based Matching for 
Interoperability of Fingerprint Sensors  

M. Selvakumar#1, D. Nedumaran*2 

Dept. of Central Instrumentation and Service Laboratory#* 
University of Madras  

Chennai-600025, Tamil Nadu, India  

Abstract— Fingerprint recognition techniques on minutiae-
based matching algorithms have been well studied and widely 
accepted by many fingerprint biometric researchers. 
Fingerprint images taken from different sensors like swipe, 
thermal, optical, capacitive, etc., have different sensor 
characteristics like change in resolution, image size, aspect 
ratio, and distortion. A fingerprint image taken from a 
capacitive swipe sensor and the same image from an optical 
press sensor does not match while using minutiae-based 
matching techniques due to sensor characteristics called 
sensor interoperability. Many algorithms were developed for 
sensor interoperability problems, but still the problem is not 
completely addressed. In this paper, the interoperability of 
sensor matching is addressed using a simple and effective 
ridge distance averaging method. This proposed method was 
tested in the images of the fingerprint database FVC 2004, 
2002 and 2000 as well as locally scanned images using various 
types of sensors with the same finger.  The performance of the 
proposed method in reducing the interoperability of sensor 
problem was studied through a comparative study with the 
established minutiae matching methods. The experimental 
results reveal that the proposed method improves the sensor 
interoperability by matching the fingerprint images taken for 
the same figure using various types of sensors whereas the 
minutiae based matching method failed to match those images 
effectively. 

Keywords—Bio-metrics, Ridge distance averaging, sensor
interoperability, fingerprint minutiae matching, capacitive 
sensor and optical sensor. 

I. INTRODUCTION 

Biometric fingerprint recognition is one of the best 
measurement techniques for unique human identification [1, 
2] than the other biometrics. Many algorithms for
fingerprint recognition were proposed by several 
researchers and they were implemented for different 
applications [3, 4]. Various fingerprint sensors with 
different provisions (inbuilt algorithms) e.g., sensing 
technology, variation in image size, resolution, contrast 
quality, internal image enhancement, etc., are now readily 
available for the fingerprint sensor designers [5]. Numerous 
fingerprint capturing devices [6-8] were built with internal 
inbuilt algorithms, whereas some problems arose because of 
change in sensors or sensor interoperability problem [9-11]. 
Fingerprint images are captured by different sensing 
phenomena which show remarkable changes in image 
properties because of the differences in the characteristics 
of the sensing equipment. Changes in capturing devices or 
sensors like Optical (FTIR sensor or the electro-optical 
sensors), Solid-state sensors (capacitive sensor or the 

thermal sensors), radio frequency, ultrasound sensors etc., 
lead to the following consequences: 

 Change in lighting leads to high, low, or medium
contrast gray level image capturing,

 Change in size and resolutions of fingerprint images
captured due to distinct sensor characteristics,

 Change on contact pressure of the fingertip with the
capturing device,

 Change in dry weather contaminants (oil and
moisture) resulting in faded fingerprint capturing,

 Distortion between the fingerprint ridges due to
movement artifact while capturing,

 Change in fingerprint images due to cuts or scars on
the fingers while capturing.

(a)  (b) 

(c)                                                  (d) 
Fig. 1(A) Image Captured By Capacitive (Swipe) Sensor Shown In (C) and 

(B) Image Captured By Optical (Press or Thumb) Sensor Shown In (D) 

In this paper, the problems in matching the fingerprints 
due to sensor interoperability were studied and the solution 
for the same in the form of algorithm was developed. In this 
study, only two capturing devices are used, one is a 
capacitive (swipe) sensor and another is an optical (press) 
sensor, since such kind of swipe and press sensors images 
are not available in the databases employed. Capacitive 
swipe sensors capture the image with closer ridge distance 
between two parallel ridges. Similarly, optical press sensor 
captures the image with evenly spaced ridge distance 
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between two parallel ridges as shown in Fig. 1. In Fig 1, the 
images were taken from two different sensors (capacitive 
swipe and optical press) for the same finger. Fig. 1(a) 
shows the fingerprint image taken from a capacitive swipe 
sensor (Eikon) shown in Fig. 1(c). Similarly, Fig. 1(b) 
shows the fingerprint image taken from optical press sensor 
(Futronics) shown in Fig. 1(d). Detailed explanations about 
the sensors are given in Section III.  

 
The fingerprint images from the capacitive swipe and 

optical press sensors do not match if the popular and 
effective minutiae-based matching method is used, due to 
the distance dissimilarity between the two neighbouring 
ridges. In this paper, we have used FVC databases [12-14], 
FVC 2000, FVC 2002 and FVC 2004 databases captured 
using various types of sensors and locally captured public 
images using optical press and capacitive swipe sensors for 
inspecting the proposed algorithm. 

 

A. The Sensor Interoperability Issues 

A fingerprint image captured by one sensor should be 
matched with same fingerprint images captured by another 
sensor, ensuring the interoperability (or compatibility) 
between two different sensors. Therefore, the 
interoperability between the captured fingerprint images is 
an important issue, but only some researchers have 
addressed this sensor interoperability problem. 

 
To solve the sensor interoperability problem, the 

common resolution and the relative resolution methods 
were applied to image-level and minutia-level to perform 
the minutiae level compensation [9]. Cao et al. adopted an 
ant-colony optimization algorithm for the compensation of 
the resolution difference of fingerprint images captured 
from different modes of acquisition [10]. Sensor 
interoperability problem was analysed based on the feature 
usability in segmentation [15-17]. Ross and Nadgir [18] 
proposed a nonlinear calibration scheme based on the Thin-
Plate Spline (TPS) model, which demonstrated a pair of 
fingerprint sensors to calibrate the evidence of a few image 
pairs, acquired using the two different sensors that 
generated an average deformation model. To address the 
interoperability related problems, sensors with inbuilt 
quality check for enhancement process [19-20] and with 
inbuilt fingerprint ridge continuity check for decreasing the 
number of attempts in capturing the fingerprint images [21] 
were also attempted. Before processing, an algorithm for 
fingerprint image recognition identified the sensor from the 
captured fingerprint image based on the inherent noise 
characteristics of the respective sensors [22, 23] and 
multiple enrolment impressions were captured for the same 
finger using the same sensor in order to increase the 
coverage area, restore the missing minutiae and eliminate 
the spurious minutiae. Most of these techniques discussed 
so far attempted the interoperability of sensor and related 
matching techniques to certain extent, since matching is 
cumbersome when the same finger is captured with 
different sensors. Therefore, sensor interoperability 
problem is still a challenging task and this research work 

attempts this problem by developing a novel matching 
algorithm and testing its applicability through performance 
study. 

 
This paper is organized as follows: Section II describes 

the proposed fingerprint matching method. Section III 
describes the experimental results which include 
performance comparisons between images, FVC database 
and sensor database. A summary and scope for future work 
is presented in Section IV. 

 

II. PROPOSED FINGERPRINT MATCHING METHOD 

Matching the minutiae is one of the best techniques to 
use due to its less template size, speed of verification, 
identification process, etc. Verifinger [24] is one of the 
popular biometric algorithms used for fingerprint matching 
process, which is based on minutiae matching technique 
that maintain equal distance between the neighbouring 
minutiae points of the matching images and are indicated in 
red lines as shown in Fig. 2. The Verifinger algorithm 
works under the Delaunay triangulation (DT) method in 
computational geometry process [25]. DT algorithm is used 
to form a DT net of minutia sets. The time complexity of 
the algorithm is, ( log )O N N , here Nis the number of 

minutiae. 
 

Using DT nets, the template image and the input image 
are taken as minutiae edges. Minutia can be described as a 

vector ( , , )T
t t tx y  in template image or as ( , , )T

i i ix y  in 

input image. Meanwhile, edge can be described as a vector 

( , , , )T
th tb t tl   in template DT net or ( , , , )T

th tb i il   in 

input DT net. In vectors, ,x y denote x, y coordinates of 

minutia, ,  denote minutia angle and orientation of edges, 

respectively and l denotes length of edge. In

( , , , )T
ih ib t tl   , th corresponds to the vertex with 

smaller x coordinates and tb corresponds to the vertex with 

larger x coordinates. The same vector can be described as

( , , , )T
ih ib i il   . 

 

Here, T can be used as 1T , 2T and 3T that represent the 

thresholds for the length of edge l , minutia angle  and 
orientation of edge , respectively. If template DT net has 

M edges and input DT net has N edges, the total number of 
edge comparison will be MXN. If no similar edge is found, 
the local matching end with rejection, which means the two 
fingerprints are not generated from the same finger. 
Triangle matching is estimated using T and l . On the left 
edge of the triangle is used to detect the next edges on right 
side. The edges on right side and the triangles are used to 
find the next edges on left side. If they are internal edges, 
then the triangle search two sides of them. Therefore, every 
pair of similar edges can produce one or two pairs of 
triangles.  
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From the DT nets, matching score is calculated using the 
relationship / ( )MS Max Sqrt M N  , where M and N 

are number of minutiae points in the template.  
 

       
(a)                                        (b) 

 

               
(c)                                        (d) 

Fig. 2 (a) and (b) are the images captured from two different optical 
sensors. The red line connects the minutiae points using DT nets method, 
which indicate that the distance between the minutiae points are found to 

be same for both images. Fig. 2(c) and (d) are the images taken from 
optical and capacitive sensors, respectively. Here, the distance between the 
minutiae points are not equally spaced (triangular edges match missing), 

then the algorithm reads as “templates do not match”. 

 

Here the algorithms performances were found to be good 
in the case of same sensor but shows error in 
interoperability of sensors. Fig. 2(a) and (b) are the images 
captured using two different optical sensors that give 
templates having minutiae on the equally spaced ridge 
patterns for both the images.  Similarly, Fig. 2(c) and (d) 
are 320 480 in size with 512 dpi resolutions and 

144 383 in size with 500 dpi resolutions, respectively. 
These images captured using optical press and capacitive 
swipe sensors, in which the ridge distance is not maintained 
equally. If the minutiae-based algorithm is applied to these 
images (Fig. 2(c) and (d)), it gives templates that are not 
matched or matching score of zero due to the difference in 
the ridge distance of the two images. On the other hand, the 
neighbouring minutiae points in one image may be either 
closer or larger than the corresponding minutiae points in 
the other fingerprint image. This is the problem prevailing 
with the minutiae-based fingerprint matching algorithm. In 
this work, the aforementioned matching problems are 
attempted by developing our proposed algorithm. 

The traditional minutiae based matching procedure 
comprises of the regular pre-processing steps viz., 
segmentation, enhancement, binarization, thinning and 
matching as shown in Fig. 3(a). In the matching step, the 
minutiae points are identified and the template is generated 
irrespective of the size of the image, scanner type, ridge 
distance etc. The proposed fingerprint matching procedure 

keeps all the pre-processing steps as such except an 
additional step between the thinning and matching steps as 
shown in Fig. 3(b). At this step, we estimated the average 
ridge distance, which is used to increase or decrease the 
distance between the two neighbouring ridges of the other 
image in order to identify the correct minutiae points for 
determining the matching template or high matching score. 

 
 

 
Fig. 3 (a) traditional minutiae based fingerprint matching procedure. 

 

 
Fig. 3 (b) proposed fingerprint matching procedure 

 

A. The Ridge Distance Averaging Method  

Ridge distance averaging method has a simple and 
effective procedure as follows.  

 Before the thinning process, the thickness of ridges 
and valleys varies from top to bottom of the 
fingerprint image. 

 After the thinning process, the ridge thickness 
becomes same (of one pixel width) and the distance 
between two neighbouring ridges (valley pixel region) 
varies from top to bottom of the fingerprint image. 

 Since the ridges are one pixel width thickness, it is 
easier to estimate the (u, v) matrix using statistical 
analysis for finding the average distance between the 
neighbouring ridges. In this work, a 32 32 matrix is 
employed to accommodate the maximum value pixel 
region in a block, since smaller matrices like 3 3 or 

5 5 matrices taken more time to complete the entire 
process. 

 Once the ridge pixel averaging process is estimated, 
then the Algorithm for ridge distance averaging 
method is applied to increase or decrease the number 
of pixels between two neighbouring ridges based on 
the average ridge distance value.  

 The Algorithm automatically increases or decreases 
the number of pixels between the ridges to identify 
the matching minutiae point in order to reach a high 
matching score. 

B. Statistical Analysis to Find the Average Ridge Distance  

The ridge distance is calculated between the two 
matching images using statistical analysis [26, 27]. Before 
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applying the statistical analysis, we have to consider the 
following to avoid inaccuracy in the estimation of the 
average ridge distance viz., ridge lines should be clear; the 
pixel contrast is more significant; the ridges at the minutiae 
points (ridge ending, ridge bifurcation, bending ridges) 
must be clear, that is, the pre-processing stage will be 
effective to perform the statistical analysis.  Fig. 4 shows 
the thinned image ridge distance identification by the 
statistical method. The closer the ridge patterns to a given 
periodic behaviour, the greater the coefficient of the 
harmonic with that period. As spectral analysis enables the 
computation of these harmonic coefficients, it may also 
give effective estimates of the average ridge period. 

 

Fig. 4 definition of finding the ridge distance by a statistical analysis 
method in a thinned image. 

If ( , )g x y is the gray-scale value of the pixels with 

coordinates , {0, , 1}x y K N   in an M× N image, the 

DFT of ( , )g x y  is defined as follows, 

 
 

1 1
2 / (( , )( , ))

( , )
0 0

1
( , )

N N
j N x y u v

u v
x y

G g x y e
N


 



 

 
         

(1) 

where, 

1/2

2 / (( , )( , ))

2
cos ( , )( , )

2
sin ( , )( , )

j N x y u v

x y u v
N

e

j x y u v
N








         
     

  
where j is an imaginary unit of , {0, A, 1},u v N  and 

( , )( , )x y u v xu yv  is the vector dot product. ( , )u vG is 

obviously complex and ( , )u vG  denote the magnitude of

( , )u vG . In this study the theoretical report of this vector is 

defined as,  
1/22

1 1

( , ) 2
0 0

2
( , )cos ( , )( , )

1

2
( , )sin ( , )( , )

N N

u v
x y

g x y x y u v
N

G
N

g x y x y u v
N





 

 

      
     

          

   

(2) 

( , )u vG is the coefficients which represents the periodic 

characteristics of point u, v. The dominant period of signals 

in an area can be determined by analysing the distribution 

of values of ( , )u vG .The whole procedure of ridge distance 

estimation with the spectral analysis method relies on a 
radial distribution function ( )Q r defined as follows, 

 

( , )
( , )

1
( )

r

u v
u v Cr

Q r G
C 

 
                     

(3) 

Here ( , )u vG  represents the expression for the ridge 

distance resulting from a single harmonic accepted that 
gives ( )Q r  the average contribution of the harmonics with 

ridge distance N/r to the construction of the overall image, 
and the value of r corresponding to the maximum value of

( )Q r  that is the incident times of dominant signal in this 

area. In detail, the computation of ( )Q r only involves the 

modulus of the harmonic coefficients, and the set of 
coefficients taken into consideration for each r is obviously 
invariant through any rotation of the image. Whereas

0 2( 1), rr n C   , here rC represents the set of 

coordinate values u, v that satisfy 2 2u v r  and rC is 

the number of elements of rC . The following algorithm is 

taken for ridge distance averaging estimation by the spectral 
analysis method in fingerprint images. 

C. Algorithm for Ridge Distance Averaging  

Algorithm for Ridge distance averaging between two 
images. 
Input: Binary thinned image X of size ( )u v Q r  and r 

is kernel radius of the image 
Input: Binary thinned image Y of size u v k   and r is 
kernel radius of the image 
Output: Image Z of size ( )U V Q r  with change in 

pixel distribution ( )W H . 

  dofor i u  

         dofor j v  

              Q(r)  dofor k  
                     1Add , ,i r j r P rY Y Y    to width and  

    height ( )W H  

                     Q(r)  dofor k  
                          1Remove , ,i r j r P rY Y Y    from width and 

    height ( )W H  

  1 1i r i rH H Y Y       

  1 1i r i rW W Y Y       

  ( ) ( )i j i jZ H W  
 

         end for  

                end for   

         end for  

  end for  
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Here X is the ridge distance averaged input image, Y is 
the ridge distance without averaged input image and Z is 
output image with ridge distance averaged of input image Y. 
Here ‘ ( )Q r ’ is the known average ridge distance 

(calculated using Eq. 3) with a block size ( )u v Q r  of 

the input image X, where ‘k’ is the unknown ridge distance 
with a block size of u v k  in the input image Y. 
Algorithm for ridge distance averaging method detects the 
value of ‘ ( )Q r ’ and compares with the image Y, if the 

value of ( )Q r k , then it removes the pixels between the 

two neighbouring ridges up to it reaches the value of ‘P’. At 
the same image Y, if the value of ( )Q r k , then it adds the 

pixels between the two neighbouring ridges up to it reaches 
the value of ‘ ( )Q r ’ in the block size of u v k  . After 

this process, the height (H) and width (W) of the image is 
automatically adjusted to make an output image Z of size 

( )U V Q r  for perfect matching. With the help of ridge 

distance averaging method, four sets of fingerprint images 
were taken from two different sensors and processed and 
are shown in Fig. 6.Further, FVC database and sensor 
public database images are tested with the proposed 
algorithm and the ROC curves are plotted to find the 
average equal error rate (EER) value for estimating the 
performance of the algorithm.   

 

           
 (a)                      (b)                   (c) 

 
Fig. 5 (a) original image of capacitive swipe sensor, (b) without ridge 

averaging method (traditional procedure) and (c) proposed ridge averaging 
method (using a constant value ( ) 3Q r  ) 

Fig. 5(a) shows the raw fingerprint image taken by the 
capacitive swipe sensor. Fig. 5(b) is the thinned image 
without ridge distance averaging method (traditional 
procedure) and Fig. 5(c) shows the thinned image with 
ridge distance averaging method by applying a constant 
value of ( ) 3.Q r  Here, ridge distance averaging algorithm 

makes the automatic adjustments (adding or removing) of 
pixels in-between the two neighbouring ridges that yield 
prominent changes in the entire fingerprint image without 

affecting the details (minutiae points) and retaining the 
originality (location of the minutiae) of the fingerprint 
images.  

III. EXPERIMENTAL RESULTS 

Several fingerprint images are taken from the public 
databases employ Optical and Swipe fingerprint sensors. 
Here four sets of fingerprint images taken from the optical 
press and capacitive swipe sensors are tested without ridge 
distance averaging method (traditional method) as well as 
ridge distance averaging method (proposed procedure) 
along with the extracted time. Two databases are used: (a) 
FVC for performance comparison measurements and (b) 
public sensor database for experimental testing (with 
images) and also for performance comparison 
measurements. 

D. Fingerprint Database Used  

FVC fingerprint database with its sensor characteristics 
are given in Table 1(a). These are used to perform the 
calculation of EER values for both the Verifinger [24] and 
the proposed fingerprint matching algorithm. In FVC 
database, all the images are scanned using different sensors 
with different sizes and resolutions. In this paper, only the 
FVC database is used for performance comparison study. 

 
Table 1(a) FVC fingerprint sensor characteristics of EER measurement for 

the proposed algorithm 

 

 
Local sensors used in this used and their characteristics 

are given in Table 1(b). These are used to perform the 
experimental testing between the Verifinger and the 
proposed fingerprint matching methods. Two types of 
sensors (Eikon and Futronics) with different sizes and 
resolutions are used and more than 800 public fingerprint 
images were scanned from each sensor to create a sensor 
database for performance comparison.   

 

Database Capturing devices Size Res. 

FVC2000 DB1 tOptical Sensor by KeyTronic 300×300 500 dpi 

FVC2000 DB2 Capacitive Sensor by STM 256×364 500 dpi 

FVC2000 DB3 Optical Sensor by Identicator  448×478 500 dpi 

FVC2002 DB1 Optical Sensor by Identix 388×374 500 dpi 

FVC2002 DB2 Optical Sensor by Biometrika 296×560 569 dpi 

FVC2002 DB3 Capacitive Sensor by Precise  300×300 500 dpi 

FVC2004 DB1 Optical Sensor by Cross match 640×480 500 dpi 

FVC2004 DB2 Optical Sensor by Digital  328×364 500 dpi 

FVC2004 DB3 Thermal sweeping by Atmel 300×480 512 dpi 
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Original (press) 
image with  pixels of 

width and height 
320x480 

Original (swipe) 
image with 144x384 
pixels of width and 

height. 

Fingerprint matching without ridge 
averaging pixels. Extracted in 315ms. 

Templates do not match. Score: 0 

Matching with ridge distance averaging 
method with 241x528 pixels. Extracted 
in 388ms, Templates match. Score: 315 

                                                                                                               

Original (press) 
image with 320x480 
pixels of width and 

height 

Original (swipe) 
image with 144x384 
pixels of width and 

height. 

Fingerprint matching without ridge 
averaging pixels. Extracted in 288ms. 

Templates do not match. Score: 0 

Matching with ridge distance averaging 
method with 241x528 pixels. Extracted 
in 359ms, Templates match. Score: 83 

     
 

Original (press) 
image with 320x480 
pixels of width and 

height 

Original (swipe) 
image with 144x384 
pixels of width and 

height. 

Fingerprint matching without ridge 
averaging pixels. Extracted in 300ms. 

Templates do not match. Score: 0 

Matching with ridge distance averaging 
method with 233x526 pixels. Extracted 
in 332ms, Templates match. Score: 105 

      

Original (press) 
image with 320x480 
pixels of width and 

height 

Original (swipe) 
image with 44x384 
pixels of width and 

height. 

Fingerprint matching without ridge 
averaging pixels. Extracted in 350ms. 

Templates do not match. Score: 0 

Matching with ridge distance averaging 
method with 240x536 pixels. Extracted 
in 391ms Templates match. Score: 104 

                                                     (a)                                                                        (b)                                                                     (c) 

Fig. 6(a) original grey-scale fingerprint image with different sensors having change in image width and height, (b) fingerprint matching without ridge 
distance averaging and the result gives non-matched fingerprint images, (c) fingerprint matching with ridge distance averaging and the result obtained as 

template matched with high matching scores. 
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Table 1(b) two fingerprint sensors characteristics for developing the sensor 
public database manually 

Fig. 7 (a) ROC curves of two algorithms on FVC2000 database

Fig. 7 (b) ROC curves of two algorithms on FVC2002 database 

Fig. 7 (c) ROC curves of two algorithms on FVC2004 database 

Fig. 8 (a) ROC curves on optical vs. Optical fingerprint database

8 (b) ROC curves on swipe vs. Swipe fingerprint database 

Fig. 8 (c) ROC curves on swipe vs. Optical fingerprint database 

E. Performance Comparison of Images  

Fig. 6(a) shows the original gray scale images taken with 
two different sensors, optical (press) and capacitive (swipe) 
sensors reported in Table 1(b). Fig. 6(b) shows the 
fingerprint matching without ridge distance averaging 
method and the result as “templates do not match” using the 
Verifinger minutiae matching algorithm and Fig. 6(c) 
shows the fingerprint matching with ridge distance 
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Devices Capturing device Size Res.

Eikon scanner Capacitive swipe scanner 144 × 384 512 dpi 

Futronics scanner Optical press scanner 320 × 480 500 dpi 
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averaging method (proposed procedure) with an auto 
change in pixel distribution with respect to the matching 
image and the result as “template matches” along with the 
extraction time and the matching score. 

F. Performance Comparison on FVC2004, 2002, and 2000 
Databases  

The receiver operating characteristic (ROC) curves of 
Verifinger and the proposed algorithm for FVC2004, 2002 
and 2000 databases are plotted in Figs. 7(a), (b), and (c) and 
their corresponding EER values are reported in Table 2. 

 

Table 2: equal error rate (EER) for verifinger vs. proposed method with 
FVC databases 

Matching 
Method 

EER for 
FVC 
2000 

EER for 
FVC 
2002 

EER for 
FVC 
2004 

Average 
EER 

Verifinger 2.856% 2.744% 2.998% 2.866% 

Proposed 2.828% 2.933% 3.128% 2.963% 

G. Performance Comparison of Optical vs. Optical, Swipe 
vs. Swipe and Optical vs. Swipe manual databases  

The receiver operating characteristic (ROC) curves of 
Verifinger and the proposed algorithm for optical vs. 
optical, swipe vs. swipe and swipe vs. optical databases are 
plotted in Fig. 8(a), (b), and (c) and their corresponding 
average EER values are reported in Table 3. 

 
Table 3: equal error rate (EER) for verifinger vs. Proposed method with 

optical vs. Optical, swipe vs. Swipe and swipe vs. Optical databases 
(sensor databases) 

Matching 
Method 

EER for 
Optical vs. 

Optical 

EER for 
Swipe vs. 

Swipe 

EER for 
Swipe vs. 
Optical 

Average 
EER 

Verifinger 2.914% 2.833% 7.022% 4.256% 

Proposed 2.983% 3.271% 2.904% 3.052% 

 
The overall average EER values for Verifinger matching 

(traditional procedure) without ridge distance averaging and 
the proposed matching with ridge distance averaging with 
FVC and Sensor databases are tabulated in Table 4. 

 
Table 4: overall average EER values for verifinger matching method vs. 

proposed matching method. 

Matching Method 
Average 

EER for FVC 
databases 

Average 
EER for Sensor 

databases 

Overall 
average 

EER 

Verifinger 2.866% 4.256% 3.561% 

Proposed 2.963% 3.052% 3.007% 

 
The EER is defined as the equal error rate when the FAR 

and the FRR are equal. According to R. Cappelli [28] the 
average EER categorizes the performance between open 
and light categories. If the lower level of the average EER 
is 2.0%, then it is an open category; and if the EER 
is >3.5%, then it is light category. For the fingerprint 
matching analysis, the average EER lies between 2% to 
3.5%.  The average EERs estimated for the FVC databases 
are found to be 2.866% and 2.963% for the Verifinger and 

proposed matching method, respectively. This indicates that 
our proposed method is close to the Verifinger matching 
method. 

Similarly, the estimated EER for the databases of the 
sensors are given in Table 3. The EERs for the optical vs. 
optical, swipe vs. swipe, and swipe vs. optical databases are 
found to be 2.914%, 2.833% and 7.022% and 2.983%, 
3.271% and 2.904% for Verifinger and proposed matching 
method, respectively. Our proposed matching method for 
swipe vs. optical database gives the best performance of 
2.904% for the EER. The average EERs estimated for the 
sensors-databases are found to be 4.256% and 3.052% for 
the Verifinger and proposed matching method, respectively. 
It clearly indicates that our method gives a better matching 
performance even on the sensor interoperability issues. 
From Table 4, it is found that the average EERs estimated 
for the FVC database and sensor-databases are 3.561% and 
3.007% for the Verifinger and proposed matching method. 
From the overall performance comparison of ROC curves 
and the EER values, it is clear that the proposed algorithm 
is designed to overcome the many of the sensor 
interoperability problems or change in sensors and gives the 
best result in the overall EER, which is evident from the 
performance comparison study. 

The ridge distance averaging method and Verifinger 
matching method were developed using C++ and the 
approximate time of execution of the two algorithms were 
found to be 368 ms and 318 ms for the proposed and 
Verifinger matching methods.  Even though our method 
consumes more time, our matching performance is better. 
An Intel Xeon processor operating at a clock frequency of 
1.6GHz was used in our work. 

 

IV. CONCLUSION  

We have succeeded in designing an algorithm which will 
extract and match all types of fingerprint images, 
particularly change in sensors. The proposed algorithm 
gives a high matching performance by adjusting the values 
of the pixels after the thinning process. The proposed 
algorithm will not affect the quality of the image as well as 
false acceptance and false rejection ratio. Good EER values 
of 3.007% were obtained using the proposed algorithm.  
We have tested with FVC databases as well as with optical 
and swipe sensor images. This algorithm may be adaptable 
for other sensor (thermal, capacitive, etc.) interoperability 
issues.  

Whatever the capturing device, our proposed algorithm is 
very useful to extract and match the fingerprint images 
easily with a good matching score. 

In this study, we have considered only two different 
sensors.  It can be easily being extended with multiple 
sensors using the proposed algorithm. 
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